¿Sabes cuáles son las mejores técnicas de análisis de datos para la toma de decisiones que un directivo puede usar?
Esta es la pregunta que el otro día me lanzo uno de mis prospectos.
Lo cierto es que me quede helado. Casi sin saber que decirle. Yo no soy estadístico y lo poco que recuerdo de esta disciplina es lo que aprendí durante mis estudios universitarios en Deusto allá por el año 1975.
¡Vamos, hace una eternidad en el siglo pasado!
Lo cierto es que salí de aquella pregunta como mejor pude.
Y durante un par de días me quede barruntando una posible respuesta. Por eso tras un poco de investigación y preguntas internas lanzadas a mi equipo, he decidido a escribir esta entrada sobre técnicas de análisis de datos que todo directivo debería al menos saber que existen.
Contenidos
- 1 Listado de técnicas de análisis de datos útiles para tu empresa
- 1.1 1.-# Análisis de correlaciones
- 1.2 2.-# Análisis de regresión
- 1.3 3.-# Visualización de datos
- 1.4 4.-# Análisis de escenarios
- 1.5 5.-# Data mining
- 1.6 6.-# Análisis de sentimiento
- 1.7 7.-# Análisis semánticos de textos
- 1.8 8.-# Análisis o de patentes y literatura científica
- 1.9 9.-# Simulación de Monte Carlo
- 1.10 10.-# Programación y optimización matemática
- 1.11 11.-# Predicción matemática
- 1.12 12.-# Redes neuronales
- 1.13 13.-# Experimientos AB
- 2 Otras técnicas de análisis de datos en auge
- 3 Lecturas Recomendadas sobre el Análisis de Datos
Listado de técnicas de análisis de datos útiles para tu empresa
Una advertencia. No voy a entrar en este artículo en las posibles herramientas para realizar estos análisis. Eso lo reservo para otras entradas en este blog.
Dicho esto, paso a enumerar estas técnicas de análisis de datos que pueden servir a tu proceso de toma de decisiones en tu organización:
1.-# Análisis de correlaciones
Esta es una técnica de análisis datos estadístico. Sirve para determinar si existe una relación entre dos variables cuantitativas diferentes y cuan fuerte es esa relación entre las variables. Suele utilizarse cuando se sospecha que dos variables siguen o tiene una evolución similar. Ej: el indice IBEX 35 y el DAXX. Puedes profundizar aquí sobre el análisis de correlaciones y aquí.
2.-# Análisis de regresión
Se trata de otra de las técnicas de análisis de datos estadísticos para investigar la relación entre diferentes variables. Se utiliza cuando una se sospecha que una de las variables puede estar afectando (variable independiente) al comportamiento de la otra (variable dependiente) u otras. Puedes profundizar más sobre los análisis de regresión aquí y aquí.
3.-# Visualización de datos
La visualización de datos es de lejos una de las técnicas de análisis de datos más demandada y apreciada a día de hoy por lo fácil que resulta a través de un gráfico o imagen detectar patrones en los datos. Es especialmente útil cuando buscamos entender grandes volúmenes de datos de forma rápida y simplificada. Las infografías y gráficos son la forma más popular de este tipo de técnicas que utilizan softwares tipo Tableu Boureu o Qlick View
4.-# Análisis de escenarios
El análisis de escenarios consiste en analizar una variedad determinada de eventos futuros con resultados alternativos. Es bueno utilizarlo cuando no estamos seguros sobre que decisión tomar o que curso de acción perseguir. Este es un buen ejemplo de análisis de escenarios
5.-# Data mining
El data mining o minería de datos es un proceso de análisis de datos pensado para trabajar con grandes volúmenes de datos. Ahora es más conocido como Big data y se usa para detectar patrones, relaciones o información relevante que pueda mejorar el desempeño de operaciones relacionadas con el cliente y el Internet de las cosas.
6.-# Análisis de sentimiento
Este es otra de las técnicas de análisis de datos que se ha vuelto muy popular gracias a las redes sociales. Trata de determinar la actitud de un individuo o grupo hacia un tema particular. Se usa cuando se busca comprender la opinión de los distintos agentes que interactúan en una industria. La gran dificultad de este tipo de análisis es que se basa en aspectos subjetivos muy difíciles de medir que tienen que ver con emociones humanas.
7.-# Análisis semánticos de textos
Este tipo de análisis, también conocido como minería de textos, es un proceso que trata de extraer valor a través del análisis semántico de grandes volúmenes de textos. Relacionado con la técnica anterior busca que los ordenadores sean capaces de entender lo que indexan y obtener datos de textos no estructurados. La herramienta que mejor conozco para este tipo de análisis es BItext.
8.-# Análisis o de patentes y literatura científica
Esta técnica de análisis de datos utiliza los meta datos de publicaciones científicas y patentes para extraer información sobre tendencias y relaciones entre estudios, autores o propiedad intelectual. Es una de las técnicas más usadas en la vigilancia de tendencias tecnológicas.
9.-# Simulación de Monte Carlo
Esta técnica de probabilidad matemática es usada para medir el riesgo aproximado de que un hecho determinado tenga lugar. Es muy útil para entender las implicaciones que puede tener un determinado curso de acción derivado de una decisión.
10.-# Programación y optimización matemática
También conocida como optimización lineal, es un método para identificar cual es mejor resultado posible dadas unas restricciones concretas a nuestra situación. Se utiliza mucho para resolver problemas dados en procesos de producción y determinar cómo minimizar los costes o maximizar los beneficios.
11.-# Predicción matemática
Es un conjunto de técnicas estadísticas que emplea datos de series temporales para predecir cuál es el resultado más probable que se puede dar en el futuro cercano. La base de estas técnicas de análisis de datos es fijarse en que es lo que ha ocurrido en el pasado para saber qué ocurrirá en el futuro. Es muy utilizado en proyecciones macro-económicas.
12.-# Redes neuronales
Esta tal vez sea una de las técnicas de análisis de datos más complejas que existen. Las redes neuronales tratan de simular el proceso de decisión e información del cerebro o grupos de neuronas. El objetivo de estas redes es simular el proceso de aprendizaje de un cerebro humano en una computadora para facilitar la toma de decisiones en inteligencias artificiales.
13.-# Experimientos AB
También conocidos como pruebas AB o split testing son unas de las técnicas más usadas en marketing digital para comprobar la reacción de los usuarios ante un mensaje y ver cual funciona mejor. Se utiliza sobre todo para testar hipótesis en el lanzamiento de un nuevo producto, una campaña publicitaria o un mensaje en un anuncio.
Otras técnicas de análisis de datos en auge
Para terminar esta entrada y no alargarme demasiado en este tema. Creo que es necesario mencionar al menos otras técnicas de análisis de datos que se encuentran en auge:
- Análisis de imágenes: es un proceso de extracción de información a través de imágenes como fotografías, imágenes médicas y gráficos. Está siendo usado en las industrias de salud para detección de enfermedades y en el sector seguridad para la detección facial.
- Análisis de Vídeo: similar al anterior trata también de reconocer y predecir el comportamiento de una persona.
- Análisis de voz: es un proceso de extracción de información a través del audio para facilitar la comprensión de conversaciones. Este puede ser utilizado para analizar las conversaciones telefónicas en un servicio de atención telefónica.
El análisis de por imagen, voz, vídeo son herramientas que están siendo utilizadas por grandes empresas para optimizar sus procesos. Aunque quedan lejos del gran público en general.
Lecturas Recomendadas sobre el Análisis de Datos
Si buscas profundizar algo mas sobre las tecnicas de analisis de datos echa un vistazo a los siguientes manuales:
- Lean Analytics: te lo recomiendo si lo que buscas es emplear tecnicas de analisis rápidas y sencillas. Un buen manual publicado por UNIR.
- Big data en la práctica: una guía de Bernard Marr con 45 ejemplos de empresas que no te debes perder.
- Técnicas de análisis de datos en investigación de mercados: gran recopilación y explicación de cada una de las tecnicas relacionadas con el analisis de datos a nivel profesional y tecnico.
- Data Mining: practical machine lerning Tools and Techniques. Guía avanzada de técnicas y principios para el análisis de grandes volúmenes de datos.
- Técnicas de Data Mining: un buen manual para sacar provecho de los datos obtenidos de los clientes, marketing y sistemas CRM.
Seguro no esta todo lo que existe sobre el mundo del analisis de los datos pero es un buen comienzo te lo aseguro.
Espero que esta entrada recopilatoria de técnicas de análisis de datos te haya resultado de utilidad. Si conoces algún manual extra que no haya mencionado puedes contarlo en los comentarios.
Photo credit: bionicteaching via Foter.com / CC BY-NC